A motherboard is the central or primary printed circuit board (PCB) making up a complex electronic system, such as a modern computer or laptop. It is also known as a mainboard, baseboard, system board, planar board, or, on Apple computers, a logic board, and is sometimes abbreviated casually as mobo.[1]
Most motherboards produced today are designed for so-called IBM-compatible computers, which held over 96% of the global personal computer market in 2005.[2] Motherboards for IBM-compatible computers are specifically covered in the PC motherboard article.
A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane also contains the central processing unit and other subsystems such as real time clock, and some peripheral interfaces.
A typical desktop computer is built with the microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices are typically attached to the motherboard via edge connectors and cables, although in modern computers it is increasingly common to integrate these "peripherals" into the motherboard.
All of the basic circuitry and components required for a computer to function are onboard the motherboard or are connected with a cable. The most important component on a motherboard is the chipset. It often consists of two components or chips known as the Northbridge and Southbridge, though they may also be integrated into a single component. These chips determine, to an extent, the features and capabilities of the motherboard.
The motherboard of a typical desktop consists of a large printed circuit board. It holds electronic components and interconnects, as well as physical connectors (sockets, slots, and headers) into which other computer components may be inserted or attached.
Most motherboards include, at a minimum:
- sockets (or slots) in which one or more microprocessors (CPUs) are installed[3]
- slots into which the system's main memory is installed (typically in the form of DIMM modules containing DRAM chips)
- a chipset which forms an interface between the CPU's front-side bus, main memory, and peripheral buses
- non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system's firmware or BIOS
- a clock generator which produces the system clock signal to synchronize the various components
- slots for expansion cards (these interface to the system via the buses supported by the chipset)
- power connectors flickers, which receive electrical power from the computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[4]
Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heatsinks and mounting points for fans to dissipate excess heat.
Integrated peripherals
With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly-integrated motherboards are thus especially popular in small form factor and budget computers.For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:
- disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
- integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
- integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
- fast Ethernet network controller for 10/100 Mbit networking
- USB 2.0 controller supporting up to 12 USB ports
- IrDA controller for infrared data communication (e.g. with an IrDA enabled Cellular Phone or Printer)
- temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components
Peripheral card slots
A typical motherboard of 2007 will have a different number of connections depending on its standard. A standard ATX motherboard will typically have 1x PCI-E 16x connection for a graphics card, 2x PCI slots for various expansion cards and 1x PCI-E 1x which will eventually supersede PCI.A standard Super ATX motherboard will have 1x PCI-E 16x connection for a graphics card. It will also have a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. This varies between brands and models.
Some motherboards have 2x PCI-E 16x slots to allow more than 2 monitors without special hardware or to allow use of a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together to allow better performance in intensive graphical computing tasks such as gaming and video editing.
As of 2007, virtually all motherboards come with at least 4x USB ports on the rear with at least 2 connections on the board internally for wiring additional front ports that are built into the computers case. Ethernet is also included now. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard to allow sound to be output without the need for any extra components. This allows computers to be far more multimedia based than before. Cheaper machines now often have their graphics chip built into the motherboard rather than a separate card.
[edit] Temperature and reliability
Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the northbridge, in modern motherboards. If the motherboard is not cooled properly, then this can cause the motherboard to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heatsinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed.Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.
A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]
- For more information on premature capacitor failure on PC motherboards, see capacitor plague.
Form factor
Laptop computers generally use highly integrated, miniaturized, and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.
Nvidia SLI and ATI Crossfire
Nvidia SLI and ATI Crossfire technology allows 2 or more of the same series graphics cards to be linked together to allow a faster graphics experience. Almost all medium to high end Nvidia cards and most high end ATI cards support the technology.They both require compatible motherboards. There is an obvious need for 2x PCI-E 16x slots to allow 2 cards to be inserted into the computer. The same function can be acheived in 650i motherboards by NVIDIA, with a pair of x8 slots. Originally, tri-Crossfire was acheived at 8x speeds with 2 16x slots and 1 8x slot albeit at a slower speed. ATI opened the technology up to Intel in 2006 and such all new Intel chipsets support Crossfire.
SLI is a little more proprietary in its needs. It requires a motherboard with Nvidia's own NForce chipset series to allow it to run.
Although this might seem like a great idea, it is important to note that SLI and Crossfire only offer up to 1.5x the performance of a single card when using a dual setup. They also do not double the effective amount of Vram.
History
Prior to the advent of the microprocessor, a computer was usually built in a card-cage case or mainframe with components connected by a backplane consisting of a set of slots themselves connected with wires; in very old designs the wires were discrete connections between card connector pins, but printed-circuit boards soon became the standard practice. The central processing unit, memory and peripherals were housed on individual printed circuit boards which plugged into the backplane.During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard (see above). In the late 1980s, motherboards began to include single ICs (called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboard, mouse, floppy disk drive, serial ports, and parallel ports. As of the late 1990s, many personal computer motherboards support a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retain only the graphics card as a separate component.
The early pioneers of motherboard manufacturing were Micronics, Mylex, AMI, DTK, Hauppauge, Orchid Technology, Elitegroup, DFI, and a number of Taiwan-based manufacturers.
Popular personal computers such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.
Bootstrapping using the BIOS
Most modern motherboard designs use a BIOS, stored in a EEPROM chip soldered to the motherboard, to bootstrap the motherboard. (Socketed BIOS chips are widely used, also.) By booting the motherboard, the memory, circuitry, and peripherals are tested and configured. This process is known as a Power On Self Test or POST. Errors during POST result in POST error codes, ranging from simple audible beeps from the speaker to complex diagnostic messages displayed on the video monitor.
The BIOS often requires configuration settings to be stored on the motherboard. Since configuration settings must be easily edited, these settings are often stored in non-volatile RAM (NVRAM) rather than in some sort of read-only memory (ROM). When a user makes configuration changes or alters the date and time of the computer, this small NVRAM circuit stores the data. Typically, a small, long-lasting battery (e.g. a lithium coin cell CR2032) is used to keep the NVRAM "refreshed" for many years. Therefore, a failing battery on a motherboard will produce the symptoms of a computer that cannot determine the correct date and time, nor remember what hardware configuration the user has selected. The BIOS itself is unaffected by the status of the battery.
When IBM first introduced the PC in the 1980s, imitations were quite common. (The physical parts which made up the motherboard were trivial to acquire.) However, the imitations were never successful until the IBM ROM BIOS was legally copied.[10] To understand why copying the BIOS was an important step, consider that the BIOS contained vital instructions which interacted with peripherals. Without these software instructions in the BIOS, a PC would not function properly. (In most modern computer operating systems, the BIOS is bypassed for most hardware functions, but in the 1980s, the BIOS served many vital low-level functions.)
So when Compaq Computer Corp. spent US$1 million to clone the IBM BIOS using reverse engineering, they became an elite computer manufacturer of IBM PC Clones. Phoenix Technology soon matched their feat and began reselling BIOSes to other clone makers.[11] It has been noted that Microsoft was more than happy to license the operating system (DOS), and IBM was more than happy to sue companies[12] that violated the copyright of their BIOS. But by documenting and publicizing the reverse engineering of the BIOS, Compaq and Phoenix were legally competing with IBM using their own copyrighted BIOS.
Once the bootstrapping of the computer's peripherals are complete, the BIOS will normally pass control to another set of instructions stored on a bootable device.
Devices which are normally used to boot a computer:
- floppy drive
- network controller
- CD-ROM drive
- DVD-ROM drive
- SCSI hard drive
- IDE, EIDE, or SATA hard drive
- External USB memory storage device
No comments:
Post a Comment